Suppose you are climbing a hill whose shape is given by the equation

Suppose you are climbing a hill whose shape is given by the equation z=1000-0.005x2-0.01y2, where x, y, and z are measured in meters, and you are standing at a point with coordinates (60,40,966). The positive x-axis points east and the positive y-axis points north.
(a) If you walk due south, will you start to ascend or descend? At what rate?
(b) If you walk northwest, will you start to ascend or descend? At what rate?
(c) In which direction is the slope largest? What is the rate of ascent in that direction? At what angle above the horizontal does the path in that direction begin?
*Appended*
I’m pretty sure that, because of part C, the whole thing has to be treated as a function of f(x,y,z). This has no effect on the first two answers. Also, I believe there is a mistake in parts A and B of the first posted solution: Part A should be an ascent of 0.8m and Part B should be a descent of 0.141m. I and another person have already arrived at those answers independently, I simply asked the entire question so that future users will have the whole thing on record.

Answer

Given equation, z=1000-0.005x2 -0.01v (a) First, find the directional derivatives 0.005.2 x-0.01x -0.01.2.y-0.02 y The direct

Leave a Comment