Use a double integral to find the area of the region inside the cardioid (r=1 + costheta) and outside the circle (r=3costheta) . Please show all steps. Thank you in advance!

## Answer

1.5 0.5 -0.5 1.5- 1 cos(t) 3cos(t) .2 -0.5 0.5 1.5 2.5 3.5

Use a double integral to find the area of the region The region inside the cardiol dr 1+cos θ and outside the circle r 3 cos θ consider: 1+cos θ, -3 cos θ such that j →1+cos θ = 3 cos θ or 4π the area of the regioninside of / is rdrd θ (1 + 2 cos θ + cos 2 θ)de + cos 2θ cos θ+ the area of the regi on outsi de of r is 5xB3coste A2 rdrd θ aP 0 1+cos 2 20 4 32 3T 93 the area of the region- A-A 9-B 3π.943